Optimal solutions to a linear inverse problem in geophysics.
نویسندگان
چکیده
This paper is concerned with the solution of the linear system obtained in the Backus-Gilbert formulation of the inverse problem for gross earth data. The theory of well-posed stochastic extensions to illposed linear problems, proposed by Franklin, is developed for this application. For given estimates of the statistical variance of the noise in the data, an optimal solution is obtained under the constraint that it be the output of a prescribed linear filter. Proper specification of this filter permits the introduction of information not contained in the data about the smoothness of an acceptable solution. As an example of the application of this theory, a preliminary model is presented for the density and shear velocity as a function of radius in the earth's interior.
منابع مشابه
Inputs and Outputs Estimation in Inverse DEA
The present study addresses the following question: if among a group of decision making units, the decision maker is required to increase inputs and outputs to a particular unit in which the DMU, with respect to other DMUs, maintains or improves its current efficiencylevel, how much should the inputs and outputs of the DMU increase? This question is considered as a problem of inverse data envel...
متن کاملApplication of different inverse methods for combination of vS and vGPR data to estimate porosity and water saturation
Inverse problem is one of the most important problems in geophysics as model parameters can be estimated from the measured data directly using inverse techniques. In this paper, applying different inverse methods on integration of S-wave and GPR velocities are investigated for estimation of porosity and water saturation. A combination of linear and nonlinear inverse problems are solved. Linear ...
متن کاملAn iterative method for the Hermitian-generalized Hamiltonian solutions to the inverse problem AX=B with a submatrix constraint
In this paper, an iterative method is proposed for solving the matrix inverse problem $AX=B$ for Hermitian-generalized Hamiltonian matrices with a submatrix constraint. By this iterative method, for any initial matrix $A_0$, a solution $A^*$ can be obtained in finite iteration steps in the absence of roundoff errors, and the solution with least norm can be obtained by choosing a special kind of...
متن کاملEquivalent a posteriori error estimates for spectral element solutions of constrained optimal control problem in one dimension
In this paper, we study spectral element approximation for a constrained optimal control problem in one dimension. The equivalent a posteriori error estimators are derived for the control, the state and the adjoint state approximation. Such estimators can be used to construct adaptive spectral elements for the control problems.
متن کاملOptimal Allocation of Resources Using the Ideal-Solutions
This paper proposes a new method based on the ideal input vector to estimate inputs of a given decision making unit (DMU) when some or all of its outputs are increased to maintain its current efficiency level. In other words, this paper studied the following question: How much would be the increase in the inputs of the DMU if the decision maker increases certain outputs to a particular unit in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 68 2 شماره
صفحات -
تاریخ انتشار 1971